Multiple Consensuses Clustering by Iterative Merging/Splitting of Clustering Patterns

Autor: Frédéric Precioso, Nicolas Pasquier, Atheer Al-Najdi
Přispěvatelé: Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Projet MinD, Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Proceedings of the MLDM'2016 International Conference, Lecture Notes in Artificial Intelligence 9729
Machine Learning and Data Mining in Pattern Recognition
Machine Learning and Data Mining in Pattern Recognition, Jul 2016, New York, United States. pp.790-804, ⟨10.1007/978-3-319-41920-6⟩
Machine Learning and Data Mining in Pattern Recognition ISBN: 9783319419190
MLDM
DOI: 10.1007/978-3-319-41920-6⟩
Popis: International audience; The existence of many clustering algorithms with variable performance on each dataset made the clustering task difficult. Consensusclustering tries to solve this problem by combining the partitions generated by different algorithms to build a new solution that is more stable and achieves better results. In this work, we propose a new consensus method that, unlike others, give more insight on the relations between the different partitions in the clusterings ensemble, by using the frequent closed itemsets technique, usually used for association rules discovery. Instead of generating one consensus, our method generates multiple consensuses based on varying the number of base clusterings, and links these solutions in a hierarchical representation that eases the selection of the best clustering. This hierarchical view also provides an analysis tool, for example to discover strong clusters or outlier instances.
Databáze: OpenAIRE