Backward Stability and Divided Invariance of an Attractor for the Delayed Navier-Stokes Equation
Autor: | Yangrong Li, Qiangheng Zhang |
---|---|
Rok vydání: | 2020 |
Předmět: |
35B41
General Mathematics 010102 general mathematics Mathematical analysis 37L30 Pullback attractor delay Navier-Stokes equation Invariant (physics) Lipschitz continuity divided invariance 01 natural sciences Stability (probability) 010101 applied mathematics backward stability Compact space backward attractor Pullback Attractor Vector field 0101 mathematics pullback attractor Mathematics |
Zdroj: | Taiwanese J. Math. 24, no. 3 (2020), 575-601 |
ISSN: | 1027-5487 |
DOI: | 10.11650/tjm/190603 |
Popis: | We study backward stability of a pullback attractor especially for a delay equation. We introduce a new concept of a backward attractor, which is defined by a compact, pullback attracting and dividedly invariant family. We then show the equivalence between existence of a backward attractor and backward stability of the pullback attractor, and present some criteria by using the backward limit-set compactness of the system. In the application part, we consider the Navier-Stokes equation with a nonuniform Lipschitz delay term and a backward tempered force. Based on the fact that the delay does not change the backward bounds of the velocity field and external forces, we establish the backward-uniform estimates and obtain a backward attractor, which leads to backward stability of the pullback attractor. Some special cases of variable delay and distributed delay are discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |