Hyperexponential and Fixed-Time Stability of Time-Delay Systems: Lyapunov–Razumikhin Method
Autor: | Artem N. Nekhoroshikh, Denis Efimov, Andrey Polyakov, Wilfrid Perruquetti, Igor B. Furtat |
---|---|
Přispěvatelé: | National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] (ITMO), Finite-time control and estimation for distributed systems (VALSE), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institute of Mechanical Engineering Problems [St. Petersburg] (IPME), Russian Academy of Sciences [Moscow] (RAS), The results of Section IV are supported by the Russian Science Foundation under grant no. 18-79-10104 (https://rscf.ru/en/project/18-79-10104/) at IPME RAS. The results of Section V are supported by the Russian Science Foundation under grant no. 21-71-10032 at ITMO University. |
Rok vydání: | 2023 |
Předmět: |
implicit theorem
Lyapunov-Razumikhin theorem Control and Systems Engineering Fixed-time and hyperexponential stability ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Electrical and Electronic Engineering linear matrix inequalities time-delay systems [SPI.AUTO]Engineering Sciences [physics]/Automatic Computer Science Applications |
Zdroj: | IEEE Transactions on Automatic Control IEEE Transactions on Automatic Control, In press, ⟨10.1109/tac.2022.3168487⟩ |
ISSN: | 2334-3303 0018-9286 |
Popis: | International audience; Razumikhin-like theorems on hyperexponential and fixed-time stability of time-delay systems are proposed for both explicitly and implicitly defined Lyapunov functions. While the former method is useful for stability analysis, the latter approach is more suitable for control synthesis. Examples of systems that can be stabilized hyperexponentially and in fixed time are given. The control parameters tuning algorithm is presented in the form of linear matrix inequalities. The numerical simulations illustrate the theoretical results. |
Databáze: | OpenAIRE |
Externí odkaz: |