Enrichment of psychrophilic and acidophilic sulfate-reducing bacterial consortia – a solution toward acid mine drainage treatment in cold regions
Autor: | Subhabrata Dev, Chan Lan Chun, Miranda Galey, Chad Novotny, Tathagata Ghosh, Srijan Aggarwal |
---|---|
Rok vydání: | 2021 |
Předmět: |
Bacteria
biology Sulfates Chemistry Microbial Consortia Public Health Environmental and Occupational Health General Medicine Management Monitoring Policy and Law biology.organism_classification Acid mine drainage Mining Acetic acid chemistry.chemical_compound Microbial population biology RNA Ribosomal 16S Environmental chemistry Environmental Chemistry Desulfosporosinus Desulfotomaculum Sulfate Psychrophile |
Zdroj: | Environmental Science: Processes & Impacts. 23:2007-2020 |
ISSN: | 2050-7895 2050-7887 |
Popis: | Failure of sulfate-reducing bacteria (SRB)-mediated treatment of acid mine drainage (AMD) in cold regions due to inhibition of bacteria by acidic pH and low temperature can be overcome by enriching psychrophilic and acidophilic microbial consortia from local metal-rich sediments. In this study, we enriched microbial consortia from Arctic mine sediments at varying pH (3-7) and temperatures (15-37°C) under anaerobic conditions with repeated sub-culturing in three successive stages, and analyzed the microbial community using 16S-rRNA sequencing. The enriched SRB genera resulted in high sulfate reduction (85-88%), and significant metal removal (49-99.9%) during the initial stages (stage 1 and 2). Subsequently, sub-culturing the inoculum at pH 3-4.5 resulted in lower sulfate reduction (9-34%) due the inhibition of SRB by accumulated acetic acid (0.3-9 mM). The microbial metabolic interactions for successful sulfate and metal removal involved initial glycerol co-fermentation to acetic acid at acidic pH (by Desulfosporosinus, Desulfotomaculum, Desulfurospora, and fermentative bacteria including Cellulomonas and Anaerovorax), followed by acetic acid oxidation to CO2 and H2 (by Desulfitobacterium) at neutral pH, and subsequent H2 utilization (by Desulfosporosinus). The results, including the structural and functional properties of enriched microbial consortia, can inform the development of effective biological treatment strategies for AMD in cold regions. |
Databáze: | OpenAIRE |
Externí odkaz: |