Fermionic Light Dark Matter particles and the New Physics of Neutron Stars
Autor: | Joseph Silk, M. Cermeño, M. Ángeles Pérez-García |
---|---|
Přispěvatelé: | Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) |
Rok vydání: | 2017 |
Předmět: |
cosmological model
Nuclear Theory [ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] media_common.quotation_subject Physics beyond the Standard Model Dark matter FOS: Physical sciences Astrophysics dark matter – dense matter – stars: neutron Astrophysics::Cosmology and Extragalactic Astrophysics 01 natural sciences 7. Clean energy dark matter Nuclear Theory (nucl-th) Thermal conductivity High Energy Physics - Phenomenology (hep-ph) star 0103 physical sciences density: high neutron star 010303 astronomy & astrophysics Light dark matter media_common Physics High Energy Astrophysical Phenomena (astro-ph.HE) mass: accretion conductivity: thermal 010308 nuclear & particles physics new physics Astronomy and Astrophysics Cosmological model Universe Baryon Neutron star High Energy Physics - Phenomenology Space and Planetary Science nuclear matter Astrophysics - High Energy Astrophysical Phenomena [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] |
Zdroj: | Publ.Astron.Soc.Austral. Publ.Astron.Soc.Austral., 2017, 34, pp.e043. ⟨10.1017/pasa.2017.38⟩ Publ.Astron.Soc.Austral., 2017, 34, pp.e043. 〈10.1017/pasa.2017.38〉 |
DOI: | 10.48550/arxiv.1710.06866 |
Popis: | Dark Matter constitutes most of the matter in the presently accepted cosmological model for our Universe. The extreme conditions of ordinary baryonic matter, namely high density and compactness, in Neutron Stars make these objects suitable to gravitationally accrete such a massive component provided interaction strength between both, luminous and dark sectors, at current experimental level of sensitivity. We consider several different DM phenomenological models from the myriad of those presently allowed. In this contribution we review astrophysical aspects of interest in the interplay of ordinary matter and a fermionic light Dark Matter component. We focus in the interior nuclear medium in the core and external layers, i.e. the crust, discussing the impact of a novel dark sector in relevant stellar quantities for (heat) energy transport such as thermal conductivity or emissivities. Comment: 12 pages, 7 figures, 1 table. Review contribution |
Databáze: | OpenAIRE |
Externí odkaz: |