Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
Autor: | Cristina Peña-Ortiz, Felix Ploeger, Aurélien Podglajen, Nuria Pilar Plaza |
---|---|
Přispěvatelé: | Universidad Pablo de Olavide [Sevilla] (UPO), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, University of Wuppertal |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere Atmospheric Science 010504 meteorology & atmospheric sciences Microphysics North American Monsoon Physics QC1-999 010502 geochemistry & geophysics Atmospheric sciences Monsoon 01 natural sciences Microwave Limb Sounder Troposphere Chemistry Anticyclone 13. Climate action ddc:550 Stratosphere QD1-999 Water vapor 0105 earth and related environmental sciences |
Zdroj: | Atmospheric Chemistry and Physics, Vol 21, Pp 9585-9607 (2021) Atmospheric Chemistry and Physics Atmospheric Chemistry and Physics, European Geosciences Union, 2021, 21 (12), pp.9585-9607. ⟨10.5194/acp-21-9585-2021⟩ Atmospheric chemistry and physics 21(12), 9585-9607 (2021). doi:10.5194/acp-21-9585-2021 |
ISSN: | 1680-7324 1680-7316 |
DOI: | 10.5194/acp-21-9585-2021⟩ |
Popis: | We investigate the influence of different chemical and physical processes on the water vapour distribution in the lower stratosphere (LS), in particular in the Asian and North American monsoon anticyclones (AMA and NAMA, respectively). Specifically, we use the chemistry transport model CLaMS to analyse the effects of large-scale temperatures, methane oxidation, ice microphysics, and small-scale atmospheric mixing processes in different model experiments. All these processes hydrate the LS and, particularly, the AMA. While ice microphysics has the largest global moistening impact, it is small-scale mixing which dominates the specific signature in the AMA in the model experiments. In particular, the small-scale mixing parameterization strongly contributes to the water vapour transport to this region and improves the simulation of the intra-seasonal variability, resulting in a better agreement with the Aura Microwave Limb Sounder (MLS) observations. Although none of our experiments reproduces the spatial pattern of the NAMA as seen in MLS observations, they all exhibit a realistic annual cycle and intra-seasonal variability, which are mainly controlled by large-scale temperatures. We further analyse the sensitivity of these results to the domain-filling trajectory set-up, here-called Lagrangian trajectory filling (LTF). Compared with MLS observations and with a multiyear reference simulation using the full-blown chemistry transport model version of CLaMS, we find that the LTF schemes result in a drier global LS and in a weaker water vapour signal over the monsoon regions, which is likely related to the specification of the lower boundary condition. Overall, our results emphasize the importance of subgrid-scale mixing and multiple transport pathways from the troposphere in representing water vapour in the AMA. |
Databáze: | OpenAIRE |
Externí odkaz: |