Bifurcation analysis of the Hardy-Sobolev equation

Autor: Jean-Baptiste Casteras, Francesca Gladiali, Denis Bonheure
Rok vydání: 2020
Předmět:
Zdroj: Journal of differential equations, 296
DOI: 10.48550/arxiv.2009.04195
Popis: In this paper, we prove existence of multiple non-radial solutions to the Hardy-Sobolev equation [Formula presented] where N≥3, s∈[0,2), [Formula presented] and [Formula presented]. We extend results of E.N. Dancer, F. Gladiali, M. Grossi (2017) [12] where only the case s=0 is considered. The results specially rely on a careful analysis of the kernel of the linearized operator. Moreover, thanks to monotonicity properties of the solutions, we separate two branches of non-radial solutions.
SCOPUS: ar.j
info:eu-repo/semantics/published
Databáze: OpenAIRE