Towards Resilient Artificial Intelligence: Survey and Research Issues

Autor: Martin Pirker, Peter Kieseberg, Lukas Daniel Klausner, Sebastian Eresheim, Francesco Mercaldo, Torsten Priebe, Fiammetta Marulli, Oliver Eigner, Simon Tjoa
Přispěvatelé: O. Eigner, S. Eresheim, P. Kieseberg, L. Klausner, M. Pirker, T. Priebe, S.Tjoa, F. Marulli, F. Mercaldo, Institute of Electrical and Electronics Engineers Inc., Eigner, O., Eresheim, S., Kieseberg, P., Klausner, L. D., Pirker, M., Priebe, T., Tjoa, S., Marulli, F., Mercaldo, F.
Rok vydání: 2021
Předmět:
Zdroj: 2021 IEEE International Conference on Cyber Security and Resilience (CSR).
DOI: 10.1109/csr51186.2021.9527986
Popis: Artificial intelligence (AI) systems are becoming critical components of today's IT landscapes. Their resilience against attacks and other environmental influences needs to be ensured just like for other IT assets. Considering the particular nature of AI, and machine learning (ML) in particular, this paper provides an overview of the emerging field of resilient AI and presents research issues the authors identify as potential future work.
Comment: 7 pages, 1 figure
Databáze: OpenAIRE