Formation and structure of a current sheet in pulsed-power driven magnetic reconnection experiments

Autor: Jingtan Ma, G. C. Burdiak, George Swadling, Jack Halliday, Roland Smith, C. Garcia, Jack Hare, Sergey Lebedev, Nicholas Niasse, Nuno Loureiro, Nicholas Stuart, Andrea Ciardi, Lee Suttle, Jian Wu, S. J. Eardley, Thomas Clayson, T. Robinson, Francisco Suzuki-Vidal, Jeremy Chittenden
Přispěvatelé: Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Imperial College London, CCLRC-RAL, Blackett Laboratory, Tsinghua University [Beijing] (THU), École normale supérieure - Paris (ENS Paris), Massachusetts Institute of Technology. Laboratory for Nuclear Science, Gomes Loureiro, Nuno F, U.S Department of Energy, Engineering & Physical Science Research Council (EPSRC)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Physics of Plasmas
Physics of Plasmas, 2017, 24 (10), pp.102703. ⟨10.1063/1.4986012⟩
Physics of Plasmas, American Institute of Physics, 2017, 24 (10), pp.102703. ⟨10.1063/1.4986012⟩
arXiv
ISSN: 1070-664X
1089-7674
Popis: We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfvénic. The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales. The layer is diagnosed using a suite of high resolution laser based diagnostics, which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities, and the electron and ion temperatures. Using these measurements, we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.
Engineering and Physical Sciences Research Council (Grant EP/N013379/1)
United States. Department of Energy (Awards DE-F03-02NA00057)
United States. Department of Energy (Awards DE-SC-0001063)
National Science Foundation (U.S.) (Award DE-sc0016215)
Databáze: OpenAIRE