The Challenging Detection of Nucleobases from Pre-accretional Astrophysical Ice Analogs

Autor: Alexander Ruf, Grégoire Danger, Louis Le Sergeant d'Hendecourt, Justin Lange, Pauline Poinot, Claude Geffroy, Balkis Eddhif
Přispěvatelé: Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE29-0015,RAHIIA_SSOM,Analyses de résidus provenant d'analogues de glace interstellaire pour la compréhension de la formation de la matière organique du Système Solaire(2016), Aix Marseille Université (AMU)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: The Astrophysical journal letters
The Astrophysical journal letters, Bristol : IOP Publishing, 2019, 887 (2), pp.L31. ⟨10.3847/2041-8213/ab59df⟩
The Astrophysical journal letters, 2019, 887 (2), pp.L31. ⟨10.3847/2041-8213/ab59df⟩
ISSN: 2041-8205
2041-8213
Popis: International audience; Amino acids, sugars, and nucleobases are considered as the so-called molecular bricks of life, the major subunits of proteins and genetic materials. All three chemical families have been previously detected in meteorites. In dense molecular cloud ice analogs, the formation of a large set of amino acids and sugars (+derivatives) has been observed. In this contribution, we demonstrate that similar ices (H2O:13CH3OH:NH3 ices, 2:1:1) can also lead to the formation of nucleobases. Using combined UPLC-Orbitrap mass spectrometric and UPLC-SRM-triple quadrupole mass spectrometric analyses, we have unambiguously detected cytosine in these primitive, realistic astrophysical ice analogs. Additionally, a huge variety of nucleobase isomers was observed. These results indicate that all central subunits of biochemical materials may have already been present at early stages of chemical evolution of the protosolar nebula, before accretion toward planetesimals. Consequently, the formation of amino acids, sugars, and nucleobases does not necessarily require secondary alteration processes inside meteoritic parent bodies. They might have been supplied from dense molecular cloud ices toward post-accretional objects, such as nonaqueously modified comets, and subsequently delivered onto the early Earth's surface, potentially triggering the emergence of prebiotic chemistry leading to the first living systems.
Databáze: OpenAIRE