Entropy in uniformly quasiregular dynamics

Autor: Ilmari Kangasniemi, Yûsuke Okuyama, Tuomas Sahlsten, Pekka Pankka
Přispěvatelé: Department of Mathematics and Statistics, Geometric Analysis and Partial Differential Equations
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1903.10183
Popis: Let $M$ be a closed, oriented, and connected Riemannian $n$-manifold, for $n\ge 2$, which is not a rational homology sphere. We show that, for a non-constant and non-injective uniformly quasiregular self-map $f\colon M\to M$, the topological entropy $h(f)$ is $\log \mathrm{deg}( f )$. This proves Shub's entropy conjecture in this case.
Comment: 31 pages, v3: streamlined the proof of the entropy lower bound based on comments from P. Ha\"issinsky. Also stated some more general versions of the lower bound result, and fixed various typos throughout the paper
Databáze: OpenAIRE