Computational Complexity of Proper Equilibrium

Autor: Kristoffer Arnsfelt Hansen, Troels Bjerre Lund
Přispěvatelé: Tardos, Éva, Elkind, Edith, Vohra, Rakesh
Rok vydání: 2018
Předmět:
Zdroj: EC
Hansen, K A & Lund, T B 2018, Computational Complexity of Proper Equilibrium . in Proceedings of the 2018 ACM Conference on Economics and Computation : EC '18 . Association for Computing Machinery, pp. 113-130 . https://doi.org/10.1145/3219166.3219199
Hansen, K A & Lund, T B 2018, Computational Complexity of Proper Equilibrium . in É Tardos, E Elkind & R Vohra (eds), Proceedings of the 2018 ACM Conference on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018 . Association for Computing Machinery, New York, NY, USA, pp. 113-130, The nineteenth ACM conference on Economics and Computation (ACM EC’18), Ithaca, United States, 18/06/2018 . https://doi.org/10.1145/3219166.3219199
DOI: 10.1145/3219166.3219199
Popis: We study the computational complexity of proper equilibrium in finite games and prove the following results. First, for two-player games in strategic form we show that the task of simply verifying the proper equilibrium conditions of a given pure Nash equilibrium is NP-complete. Next, for n -player games in strategic form we show that the task of computing an approximation of a proper equilibrium is FIXPa-complete. Finally, for n -player polymatrix games we show that the task of computing a symbolic proper equilibrium is PPAD-complete.
Databáze: OpenAIRE