Trigonometric approximation of functions $f(x,y)$ of generalized Lipschitz class by double Hausdorff matrix summability method

Autor: Mohammad Mursaleen, Vishnu Narayan Mishra, Abhishek Mishra
Rok vydání: 2020
Předmět:
Zdroj: Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-10 (2020)
ISSN: 1687-1847
DOI: 10.1186/s13662-020-03124-8
Popis: In this paper, we establish a new estimate for the degree of approximation of functions $f(x,y)$ f ( x , y ) belonging to the generalized Lipschitz class $Lip ((\xi _{1}, \xi _{2} );r )$ L i p ( ( ξ 1 , ξ 2 ) ; r ) , $r \geq 1$ r ≥ 1 , by double Hausdorff matrix summability means of double Fourier series. We also deduce the degree of approximation of functions from $Lip ((\alpha ,\beta );r )$ L i p ( ( α , β ) ; r ) and $Lip(\alpha ,\beta )$ L i p ( α , β ) in the form of corollary. We establish some auxiliary results on trigonometric approximation for almost Euler means and $(C, \gamma , \delta )$ ( C , γ , δ ) means.
Databáze: OpenAIRE