Kinematic Differences in Shoulder Roll and Hip Roll at Different Front Crawl Speeds in National Level Swimmers
Autor: | Peter J. Sinclair, Carla McCabe, Jordan Andersen, Ross Sanders |
---|---|
Rok vydání: | 2019 |
Předmět: |
Male
medicine.medical_specialty Shoulder Adolescent Strength training Physical Therapy Sports Therapy and Rehabilitation Kinematics 030204 cardiovascular system & hematology 03 medical and health sciences Young Adult 0302 clinical medicine Physical medicine and rehabilitation medicine Humans Orthopedics and Sports Medicine National level Muscle Skeletal Swimming Mathematics Hip Biomechanics Torso Resistance Training 030229 sport sciences General Medicine Adaptation Physiological Biomechanical Phenomena medicine.anatomical_structure Cross-Sectional Studies Sprint Torque Athletes Front crawl 3d kinematics |
Zdroj: | Journal of strength and conditioning research. 34(1) |
ISSN: | 1533-4287 |
Popis: | Andersen, JT, Sinclair, PJ, McCabe, CB, and Sanders, RH. Kinematic differences in shoulder roll and hip roll at different front crawl speeds in National Level Swimmers. J Strength Cond Res 34(1): 20-25, 2020-Dry-land strength training is a common component of swimming programs; however, its efficacy is contentious. A common criticism of dry-land strength training for swimming is a lack of specificity. An understanding of movement patterns in swimming can enable dry-land strength training programs to be developed to elicit adaptations that transfer to improvements in swimming performance. This study aimed to quantify the range and velocity of hip roll, shoulder roll, and torso twist (produced by differences in the relative angle between shoulder roll and hip roll) in front crawl at different swimming speeds. Longitudinal torso kinematics was compared between sprint and 400-m pace front crawl using 3D kinematics of 13 elite Scottish front crawl specialists. The range (sprint: 78.1°; 400 m: 61.3°) and velocity of torso twist (sprint: 166.3°·s; 400 m: 96.9°·s) were greater at sprint than 400-m pace. These differences were attributed to reductions in hip roll (sprint: 36.8°; 400 m: 49.9°) without corresponding reductions in shoulder roll (sprint: 97.7°; 400 m: 101.6°) when subjects swam faster. Shoulder roll velocity (sprint: 190.9°·s; 400 m: 139.2°·s) and hip roll velocity (sprint: 75.5°·s; 400 m: 69.1°·s) were greater at sprint than 400-m pace due to a higher stroke frequency at sprint pace (sprint: 0.95 strokes·s; 400 m: 0.70 strokes·s). These findings imply that torques acting to rotate the upper torso and the lower torso are greater at sprint than 400-m pace. Dry-land strength training specificity can be improved by designing exercises that challenge the torso muscles to reproduce the torques required to generate the longitudinal kinematics in front crawl. |
Databáze: | OpenAIRE |
Externí odkaz: |