3D Numerical Prediction of Thermal Weakening of Granite under Tension
Autor: | Saksala, Timo |
---|---|
Přispěvatelé: | Tampere University, Civil Engineering |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
212 Civil and construction engineering
QE1-996.5 thermally induced cracking embedded discontinuity FEM rock fracture rock tensile strength thermo-mechanical problem 0211 other engineering and technologies Geology 02 engineering and technology 010502 geochemistry & geophysics 01 natural sciences Physics::Geophysics General Earth and Planetary Sciences 021101 geological & geomatics engineering 0105 earth and related environmental sciences |
Zdroj: | Geosciences, Vol 12, Iss 10, p 10 (2022) Geosciences; Volume 12; Issue 1; Pages: 10 |
ISSN: | 2076-3263 |
Popis: | This paper deals with numerical prediction of temperature (weakening) effects on the tensile strength of granitic rock. A 3D numerical approach based on the embedded discontinuity finite elements is developed for this purpose. The governing thermo-mechanical initial/boundary value problem is solved with an explicit (in time) staggered method while using extreme mass scaling to increase the critical time step. Rock fracture is represented by the embedded discontinuity concept implemented here with the linear (4-node) tetrahedral elements. The rock is modelled as a linear elastic (up to fracture by the Rankine criterion) heterogeneous material consisting of Quartz, Feldspar and Biotite minerals. Due to its strong and anomalous temperature dependence upon approaching the α-β transition at the Curie point (~573 °C), only Quartz in the numerical rock depends on temperature in the present approach. In the numerical testing, the sample is first volumetrically heated to a target temperature. Then, the uniaxial tension test is performed on the cooled down sample. The simulations demonstrate the validity of the proposed approach as the experimental deterioration, by thermally induced cracking, of the rock tensile strength is predicted with a good accuracy. publishedVersion |
Databáze: | OpenAIRE |
Externí odkaz: |