PROPAGATION OF SINGULARITIES ON AdS SPACETIMES FOR GENERAL BOUNDARY CONDITIONS AND THE HOLOGRAPHIC HADAMARD CONDITION

Autor: Michał Wrochna, Oran Gannot
Přispěvatelé: Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Rok vydání: 2020
Předmět:
Zdroj: Journal of the Institute of Mathematics of Jussieu. 21:67-127
ISSN: 1475-3030
1474-7480
DOI: 10.1017/s147474802000002x
Popis: We consider the Klein-Gordon equation on asymptotically anti-de Sitter spacetimes subject to Neumann or Robin (or Dirichlet) boundary conditions, and prove propagation of singularities along generalized broken bicharacteristics. The result is formulated in terms of conormal regularity relative to a twisted Sobolev space. We use this to show the uniqueness, modulo regularising terms, of parametrices with prescribed b-wavefront set. Furthermore, in the context of quantum fields, we show a similar result for two-point functions satisfying a holographic Hadamard condition on the b-wavefront set.
Comment: 65 pages
Databáze: OpenAIRE