Interfascial technique for vertebral artery exposure in the suboccipital triangle: the road map

Autor: L. Brannon Thomas, Juan S. Uribe, Harry R. van Loveren, Rashid M Janjua, A. Samy Youssef, Edwin Ramos
Rok vydání: 2010
Předmět:
Zdroj: Neurosurgery. 67(2 Suppl)
ISSN: 1524-4040
Popis: Background The extradural portion of the vertebral artery (VA-V3) has a unique anatomy at the craniovertebral junction. The exposure of V3 can be accompanied by profuse bleeding from the venous plexus in addition to the potential risk of inadvertent injury of the VA during surgery at the craniovertebral junction. The natural tissue planes represent a road map to the safe exposure of the VA in the suboccipital triangle. Objective To describe the microsurgical anatomy of the tissue planes in the suboccipital region. Methods The suboccipital region was bilaterally dissected in 6 fresh silicone-injected cadaver heads. An interfascial technique was used to expose the VA-V3 following a tissue plane between the deep suboccipital muscular fascia dorsally and posterior atlantooccipital membrane, the C1 periosteal membrane, and the membrane covering the VA and venous plexus ventrally. The craniovertebral junction was harvested from 2 heads and prepared for histological sections. The same technique was applied in 25 operative cases. Results The anatomic dissections confirmed the existence of an interfascial plane that can be dissected in a blunt fashion to reach as far lateral as the transverse processes of C1 and C2. Application of the dissection technique did not require diathermy coagulation in the operating room. In 25 cases, there was no injury of the VA or bleeding from the venous plexus. Conclusion Vertebral artery exposure in the suboccipital triangle (V3) can be achieved safely with minimal blood loss using a technique that follows the natural tissue plane between the deep suboccipital muscle fascia, the posterior atlantooccipital membrane, the membrane covering VA/venous plexus, and the periosteum of the C1 and C2 laminae.
Databáze: OpenAIRE