Spectral properties of stationary solutions of the nonlinear heat equation

Autor: Cazenave, Thierry, Dickstein, Flavio, Weissler, Fred B., Centre national de la recherche scientifique (França). Laboratoire Jacques-Louis Lions
Přispěvatelé: Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Rio de Janeiro (UFRJ), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Publicacions Matemàtiques
Publicacions Matemàtiques, 2011, 55, pp.185-200. ⟨10.5565/publmat_55111_09⟩
Publicacions Matemàtiques; Vol. 55, Núm. 1 (2011); p. 185-200
Recercat. Dipósit de la Recerca de Catalunya
instname
Publ. Mat. 55, no. 1 (2011), 185-200
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
DOI: 10.5565/publmat_55111_09⟩
Popis: In this paper, we prove that if $\Psi $ is a radially symmetric, sign-changing stationary solution of the nonlinear heat equation \begin{equation} \label{fAbs} u_t -\Delta u= |u|^\alpha u, \tag{NLH} \end{equation} ¶ in the unit ball of ${\mathbb R}^N $, $N= 3$, with Dirichlet boundary conditions, then the solution of \eqref{fAbs} with initial value $\lambda \Psi$ blows up in finite time if $|\lambda -1|>0$ is sufficiently small and if $\alpha >0$ is sufficiently small. The proof depends on showing that the inner product of $\Psi $ with the first eigenfunction of the linearized operator $L= -\Delta - (\alpha +1) | \Psi | ^\alpha $ is nonzero.
Databáze: OpenAIRE