The Cauchy problem for fractional conservation laws driven by Lévy noise

Autor: Neeraj Bhauryal, Guy Vallet, Ujjwal Koley
Přispěvatelé: Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Stochastic Processes and their Applications
Stochastic Processes and their Applications, Elsevier, 2020, 130 (9), pp.5310-5365. ⟨10.1016/j.spa.2020.03.009⟩
ISSN: 0304-4149
DOI: 10.1016/j.spa.2020.03.009⟩
Popis: In this article, we explore some of the main mathematical problems connected to multidimensional fractional conservation laws driven by Levy processes. Making use of an adapted entropy formulation, a result of existence and uniqueness of a solution is established. Moreover, using bounded variation (BV) estimates for vanishing viscosity approximations, we derive an explicit continuous dependence estimate on the nonlinearities of the entropy solutions under the assumption that the Levy noise depends only on the solution. This result is used to show the error estimate for the stochastic vanishing viscosity method. Furthermore, we establish a result on vanishing non-local regularization of scalar stochastic conservation laws.
Databáze: OpenAIRE