Leveraging Reinforcement Learning, Constraint Programming and Local Search: A Case Study in Car Manufacturing

Autor: Alain Nguyen, Valentin Antuori, Marie-José Huguet, Emmanuel Hebrard, Siham Essodaigui
Přispěvatelé: Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes (LAAS-ROC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, RENAULT, Lecture Notes in Computer Science, vol 12333, H. Simonis, ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: International Conference on Principles and Practice of Constraint Programming
Principles and Practice of Constraint Programming. CP 2020
Principles and Practice of Constraint Programming. CP 2020, Sep 2020, Louvain La Neuve, Belgium. pp.657-672, ⟨10.1007/978-3-030-58475-7_38⟩
Lecture Notes in Computer Science ISBN: 9783030584740
CP
DOI: 10.1007/978-3-030-58475-7_38⟩
Popis: International audience; The problem of transporting vehicle components in a car manufacturer workshop can be seen as a large scale single vehicle pickup and delivery problem with periodic time windows. Our experimental evaluation indicates that a relatively simple constraint model shows some promise and in particular outperforms the local search method currently employed at Renault on industrial data over long time horizon. Interestingly, with an adequate heuristic, constraint propagation is often sufficient to guide the solver toward a solution in a few backtracks on these instances. We therefore propose to learn efficient heuristic policies via reinforcement learning and to leverage this technique in several approaches: rapid-restarts, limited discrepancy search and multi-start local search. Our methods outperform both the current local search approach and the classical CP models on industrial instances as well as on synthetic data.
Databáze: OpenAIRE