Untying the Bundles of Solution-Synthesized Graphene Nanoribbons for Highly Capacitive Micro-Supercapacitors

Autor: Zhaoyang Liu, Yunbin Hu, Wenhao Zheng, Can Wang, Walid Baaziz, Fanny Richard, Ovidiu Ersen, Mischa Bonn, Hai I. Wang, Akimitsu Narita, Artur Ciesielski, Klaus Müllen, Paolo Samorì
Přispěvatelé: Institut de Science et d'ingénierie supramoléculaires (ISIS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Polymer Research, Max-Planck-Gesellschaft, Central South University [Changsha], Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Okinawa Institute of Science and Technology Graduate University, univOAK, Archive ouverte
Rok vydání: 2022
Předmět:
Zdroj: Advanced Functional Materials
Advanced Functional Materials, 2022, 32 (16), pp.2109543. ⟨10.1002/adfm.202109543⟩
ISSN: 1616-301X
1616-3028
DOI: 10.1002/adfm.202109543
Popis: International audience; The precise bottom-up synthesis of graphene nanoribbons (GNRs) with controlled width and edge structures may compensate for graphene's limitations, such as the absence of an electronic bandgap. At the same time, GNRs maintain graphene's unique lattice structure in one dimension and provide more open-edge structures compared to graphene, thus allowing faster ion diffusion, which makes GNRs highly promising for energy storage systems. However, the current solution-synthesized GNRs suffer from severe aggregation due to the strong π–π interactions, which limits their potential applications. Thus, it is indispensable to develop a facile and scalable approach to exfoliate the GNRs from the postsynthetic aggregates, yielding individual nanoribbons. Here, a high-shear-mixing approach is demonstrated to untie the GNR bundles into practically individual GNRs, by introducing suitable molecular interactions. The micro-supercapacitor (MSC) electrode based on solution-processed GNR film exhibits an excellent volumetric capacitance of 355 F cm−3 and a high power density of 550 W cm−3, reaching the state-of-the-art performance of graphene and related carbon materials, and thus demonstrating the great potential of GNRs as electrode materials for future energy storage.
Databáze: OpenAIRE