Random matrix model for quantum dots with interactions and the conductance peak spacing distribution
Autor: | Yoram Alhassid, A. Wobst, Ph. Jacquod |
---|---|
Rok vydání: | 2000 |
Předmět: |
Physics
Condensed Matter - Mesoscale and Nanoscale Physics Condensed matter physics Crossover FOS: Physical sciences Coulomb blockade 01 natural sciences 010305 fluids & plasmas Matrix (mathematics) Quantum dot Quantum mechanics Mesoscale and Nanoscale Physics (cond-mat.mes-hall) 0103 physical sciences Coulomb 010306 general physics Anderson impurity model Random matrix Randomness |
Zdroj: | Physical Review B. 61:R13357-R13360 |
ISSN: | 1095-3795 0163-1829 |
DOI: | 10.1103/physrevb.61.r13357 |
Popis: | We introduce a random interaction matrix model (RIMM) for finite-size strongly interacting fermionic systems whose single-particle dynamics is chaotic. The model is applied to Coulomb blockade quantum dots with irregular shape to describe the crossover of the peak spacing distribution from a Wigner-Dyson to a Gaussian-like distribution. The crossover is universal within the random matrix model and is shown to depend on a single parameter: a scaled fluctuation width of the interaction matrix elements. The crossover observed in the RIMM is compared with the results of an Anderson model with Coulomb interactions. Comment: 4 pages, 4 eps figures included, a few minor changes |
Databáze: | OpenAIRE |
Externí odkaz: |