Abrogated Cell Contact Guidance on Amino-Functionalized Microgrooves
Autor: | Birgit Finke, Vincent Roucoules, Karine Anselme, Aissam Airoudj, Henrike Rebl, J. Barbara Nebe, Andreas Körtge, Manuela Dubs, Peter Nestler, Caroline Mörke, Matthias Schnabelrauch, Christiane A. Helm |
---|---|
Přispěvatelé: | Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA) |
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Materials science Surface Properties Cells Nanotechnology Biocompatible Materials 02 engineering and technology Peptides and proteins Allylamine Extracellular matrix 03 medical and health sciences chemistry.chemical_compound Plasma Cell physiology Cell Adhesion General Materials Science Functionalization Titanium Osteoblasts Chemical modification Biomaterial [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology Plasma polymerization 030104 developmental biology Polymerization chemistry Biophysics Surface modification 0210 nano-technology Intracellular |
Zdroj: | ACS Applied Materials & Interfaces ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2017, 9 (12), pp.10461-10471. ⟨10.1021/acsami.6b16430⟩ |
ISSN: | 1944-8252 1944-8244 |
Popis: | International audience; Topographical and chemical features of biomaterial surfaces affect the cell physiology at the interface and are promising tools for the improvement of implants. The dominance of the surface topography on cell behavior is often accentuated. Striated surfaces induce an alignment of cells and their intracellular adhesion-mediated components. Recently, it could be demonstrated that a chemical modification via plasma polymerized allylamine was not only able to boost osteoblast cell adhesion and spreading but also override the cell alignment on stochastically machined titanium. In order to discern what kind of chemical surface modifications let the cell forget the underlying surface structure, we used an approach on geometric microgrooves produced by deep reactive ion etching (DRIE). In this study, we systematically investigated the surface modification by (i) methyl-, carboxyl-, and amino functionalization created via plasma polymerization processes, (ii) coating with the extracellular matrix protein collagen-I or immobilization of the integrin adhesion peptide sequence Arg-Gly-Asp (RGD), and (iii) treatment with an atmospheric pressure plasma jet operating with argon/oxygen gas (Ar/O-2). Interestingly, only the amino functionalization, which presented positive charges at the surface, was able to chemically disguise the microgrooves and therefore to interrupt the microtopography induced contact guidance of the osteoblastic cells MG-63. However, the RGD peptide coating revealed enhanced cell spreading as well, with fine, actin-containing protrusions. The Ar/O-2-functionalization demonstrated the best topography handling, e.g. cells closely attached even to features such as the sidewalls of the groove steps. In the end, the amino functionalization is unique in abrogating the cell contact guidance |
Databáze: | OpenAIRE |
Externí odkaz: |