Modeling of Photovoltaic Grid Connected Inverters Based on Nonlinear System Identification for Power Quality Analysis

Autor: Nopporn Patcharaprakiti, K. Tunlasakun, Anawach Sangswang, Juttrit Thongpron, B. Muenpinij, Dheerayut Chenvidhya, Krissanapong Kirtikara, Veerapol Monyakul
Rok vydání: 2011
Předmět:
Zdroj: Electrical Generation and Distribution Systems and Power Quality Disturbances
DOI: 10.5772/16914
Popis: Photovoltaic systems are attractive renewable energy sources for Thailand because of high daily solar irradiation, about 18 MJ/m2/day. Furthermore, renewable energy is boosted by the government incentive on adders on electricity from renewable energy like solar PV, wind and biomass, introduced in the second half of 2000s. For PV systems, domestic rooftop PV units, commercial rooftop PV units and ground-based PV plants are appealing. Applications of electricity supply from PV plants that have been filed total more than 1000 MW. With the adder incentive, more households will be attracted to produce electricity with a small generating capacity of less than 10 kW, termed a very small power producer (VSPP). A possibility of expanding domestic roof-top grid-connected units draw our attention to study single phase PV-grid connected systems. Increased PV penetration can have significant [1-2] and detrimental impacts on the power quality (PQ) of the distribution networks [3-5]. Fluctuation of weather condition, variations of loads and grids, connecting PV-based inverters to the power system, requires power quality control to meet standards of electrical utilities. PV can reduce or improve power quality levels [6-9]. Different aspects should be taken into account. In particular, large current variations during PV connection or disconnection can lead to significant voltage transients [10]. Cyclic variations of PV power output can cause voltage fluctuations [11]. Changes of PV active and reactive power and the presence of large numbers of single phase domestic generators can lead to long-duration voltage variations and unbalances [12]. The increasing values of fault currents modify the voltage sag characteristics. Finally, the waveform distortion levels are influenced in different ways according to types of PV connections to the grid, i.e. direct connection or by power electronic interfaces. PV can improve power quality levels, mainly as a consequence of increase of short circuit power and of advanced controls of PWM converters and custom devices. [13] Grid-connected inverter technology is one of the key technologies for reliable and safety grid interconnection operation of PV systems [14-15]. An inverter being a power
Databáze: OpenAIRE