Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis
Autor: | Ivan B. Sivachenko, Alexey Y. Sokolov, O. A. Lyubashina |
---|---|
Rok vydání: | 2019 |
Předmět: |
Male
0301 basic medicine medicine.medical_specialty Somatic cell Stimulation Nociceptive Pain 03 medical and health sciences 0302 clinical medicine Internal medicine medicine Noxious stimulus Animals Premovement neuronal activity Rats Wistar Respiratory system Medulla Inflammation Neurons Medulla Oblongata business.industry General Neuroscience Nociceptors Visceral Pain Colitis Rats 030104 developmental biology Endocrinology Nociception Spinal Cord Hyperalgesia medicine.symptom business 030217 neurology & neurosurgery Brain Stem |
Zdroj: | Brain Research Bulletin. 152:299-310 |
ISSN: | 0361-9230 |
DOI: | 10.1016/j.brainresbull.2019.07.030 |
Popis: | Visceral and somatic types of pain have been reported to manifest crucial differences not only in the experience, but also in their peripheral and central processing. However, the precise neuronal mechanisms that responsible for the modality-specific transmission of pain signals, especially at the supraspinal level, remain unclear. Very little is known also about the potential involvement of such mechanisms in the development of viscero-somatic hyperalgesia. Therefore, in the present study performed on urethane-anesthetized adult male Wistar rats we examined responses of neurons in the caudal ventrolateral medulla (CVLM)—the first site for supraspinal processing of both internal and external pain signals—to visceral (colorectal distension, CRD) and somatic (squeezing of the tail) noxious stimulations and evaluated alterations in response properties of these cells after the induction of colitis. It has been found out that the CVLM of healthy control rats, along with harboring of cells excited by both stimulations (23.7%), contained neurons that were activated by either visceral (31.9%) or somatic noxious stimuli (44.4%). In inflamed animals, the percentages of the visceral and somatic nociceptive cells were decreased (to 18.3% and 34.3%, correspondingly) and the number of bimodal neurons was increased (up to 47.4%); these alterations were associated with substantially enhanced responses of both the modality-specific and convergent CVLM neurons not only to CRD, but also to squeezing of the tail. Under these conditions, visceral and somatic pain stimuli induced similar changes in arterial blood pressure and respiratory rate, whereas in the absence of intestinal inflammation noxious CRD and tail stimulation evoked predominantly divergent autonomic reactions. The data obtained can benefit to a deeper understanding of the neuronal mechanisms that underlie differential supraspinal processing of visceral and somatic noxious stimuli and can potentially contribute to the realization of specific cardiovascular and respiratory accompaniments inherent to a particular type of pain. Therewith, results of the study elucidate colitis-induced alterations in these mechanisms, which may be responsible for the combined development of visceral hypersensitivity and somatic hyperalgesia. |
Databáze: | OpenAIRE |
Externí odkaz: |