The impact of mixing treatments on cloud modelling in 3D simulations of hot Jupiters
Autor: | Vivien Parmentier, Nathan J. Mayne, Stefan Lines, Thomas Mikal-Evans, Ian A. Boutle, David K. Sing, Duncan Christie, James Manners, Ben Drummond, Krisztian Kohary |
---|---|
Rok vydání: | 2021 |
Předmět: |
Earth and Planetary Astrophysics (astro-ph.EP)
Physics 010504 meteorology & atmospheric sciences FOS: Physical sciences Astronomy and Astrophysics Scale height 01 natural sciences Spectral line Computational physics Temperature gradient 13. Climate action Space and Planetary Science 0103 physical sciences Cloud height Hot Jupiter Radiative transfer Emission spectrum 010303 astronomy & astrophysics Astrophysics::Galaxy Astrophysics Mixing (physics) Astrophysics - Earth and Planetary Astrophysics 0105 earth and related environmental sciences |
Zdroj: | Monthly Notices of the Royal Astronomical Society. 506:4500-4515 |
ISSN: | 1365-2966 0035-8711 |
DOI: | 10.1093/mnras/stab2027 |
Popis: | We present results of 3D hydrodynamical simulations of HD209458b including a coupled, radiatively-active cloud model ({\sc EddySed}). We investigate the role of the mixing by replacing the default convective treatment used in previous works with a more physically relevant mixing treatment ($K_{zz}$) based on global circulation. We find that uncertainty in the efficiency of sedimentation through the sedimentation factor $f_\mathrm{sed}$ plays a larger role in shaping cloud thickness and its radiative feedback on the local gas temperatures -- e.g. hot spot shift and day-to-night side temperature gradient -- than the switch in mixing treatment. We demonstrate using our new mixing treatments that simulations with cloud scales which are a fraction of the pressure scale height improve agreement with the observed transmission spectra, the emission spectra, and the Spitzer 4.5 $\mathrm{\mu m}$ phase curve, although our models are still unable to reproduce the optical and UV transmission spectra. We also find that the inclusion of cloud increases the transit asymmetry in the optical between the east and west limbs, although the difference remains small ($\lesssim 1\%$). Comment: 17 pages. 14 figures. 1 table |
Databáze: | OpenAIRE |
Externí odkaz: |