Groups quasi-isometric to right-angled Artin groups

Autor: Jingyin Huang, Bruce Kleiner
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Duke Math. J. 167, no. 3 (2018), 537-602
Popis: We characterize groups quasi-isometric to a right-angled Artin group (RAAG) $G$ with finite outer automorphism group. In particular, all such groups admit a geometric action on a $\operatorname{CAT}(0)$ cube complex that has an equivariant “fibering” over the Davis building of $G$ . This characterization will be used in forthcoming work of the first author to give a commensurability classification of the groups quasi-isometric to certain RAAGs.
Databáze: OpenAIRE