Groups quasi-isometric to right-angled Artin groups
Autor: | Jingyin Huang, Bruce Kleiner |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
010308 nuclear & particles physics General Mathematics 010102 general mathematics 20F69 Outer automorphism group Cube (algebra) Characterization (mathematics) 01 natural sciences Commensurability (mathematics) right-angled Artin group quasi-isometry Mathematics::Group Theory rigidity Quasi-isometry 0103 physical sciences building Artin group Equivariant map 0101 mathematics cube complex 20F65 Mathematics |
Zdroj: | Duke Math. J. 167, no. 3 (2018), 537-602 |
Popis: | We characterize groups quasi-isometric to a right-angled Artin group (RAAG) $G$ with finite outer automorphism group. In particular, all such groups admit a geometric action on a $\operatorname{CAT}(0)$ cube complex that has an equivariant “fibering” over the Davis building of $G$ . This characterization will be used in forthcoming work of the first author to give a commensurability classification of the groups quasi-isometric to certain RAAGs. |
Databáze: | OpenAIRE |
Externí odkaz: |