Anisotropic elastoplastic phase field fracture modeling of 3D printed materials
Autor: | Christelle Combescure, Julien Yvonnet, Mohammed Nouari, Hamid Makich, Pengfei Li |
---|---|
Přispěvatelé: | Université Gustave Eiffel, Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), ANR, Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
Field (physics) Computational Mechanics Phase (waves) General Physics and Astronomy 02 engineering and technology 01 natural sciences Homogenization (chemistry) RVE calculations Phase field method [SPI]Engineering Sciences [physics] 0203 mechanical engineering 0101 mathematics Anisotropy Variable (mathematics) Mechanical Engineering Elastoplasticity Mechanics Function (mathematics) 3D printing Microstructure Computer Science Applications Anisotropic fracture 010101 applied mathematics 020303 mechanical engineering & transports Mechanics of Materials Fracture (geology) |
Zdroj: | Computer Methods in Applied Mechanics and Engineering Computer Methods in Applied Mechanics and Engineering, Elsevier, 2021, 386, pp.114086 HAL |
ISSN: | 0045-7825 |
Popis: | accepted; International audience; A phase field model for anisotropic, elastoplastic fracture model in layered structures obtained by 3D printing processes is proposed. An extension of anisotropic phase field to elastoplasticity model is developed. The model is able to describe a transition from quasi-brittle to elastoplastic fracture behaviors depending on the angle of layers in the microstructure with respect to the external loading. Such feature is of special interest to describe the anisotropic fracture behavior in layered 3D printed materials. The present model introduces two phase field variables, one bulk fracture damage and one micro interfacial damage variables, describing two different micro damage mechanisms. Finally, we have proposed an original methodology to identify the macroscopic strain density as a function of the micro interfacial damage variable using numerical homogenization on Representative Volume Elements. Numerical investigations show that the present model is convergent with respect to mesh refinement, and allows to describe complex crack initiation and propagation in layered elastoplastic structures. An experimental comparison is provided to validate the use of such model for 3D printed polymer materials. |
Databáze: | OpenAIRE |
Externí odkaz: |