Operads and Phylogenetic Trees
Autor: | Baez, JC, Otter, N |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Popis: | We construct an operad $\mathrm{Phyl}$ whose operations are the edge-labelled trees used in phylogenetics. This operad is the coproduct of $\mathrm{Com}$, the operad for commutative semigroups, and $[0,\infty)$, the operad with unary operations corresponding to nonnegative real numbers, where composition is addition. We show that there is a homeomorphism between the space of $n$-ary operations of $\mathrm{Phyl}$ and $\mathcal{T}_n\times [0,\infty)^{n+1}$, where $\mathcal{T}_n$ is the space of metric $n$-trees introduced by Billera, Holmes and Vogtmann. Furthermore, we show that the Markov models used to reconstruct phylogenetic trees from genome data give coalgebras of $\mathrm{Phyl}$. These always extend to coalgebras of the larger operad $\mathrm{Com} + [0,\infty]$, since Markov processes on finite sets converge to an equilibrium as time approaches infinity. We show that for any operad $O$, its coproduct with $[0,\infty]$ contains the operad $W(O)$ constucted by Boardman and Vogt. To prove these results, we explicitly describe the coproduct of operads in terms of labelled trees. 48 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |