Machine Assisted Analysis of Vowel Length Contrasts in Wolof

Autor: Elodie Gauthier, Laurent Besacier, Sylvie Voisin
Přispěvatelé: Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP ), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Dynamique Du Langage (DDL), Université Lumière - Lyon 2 (UL2)-Centre National de la Recherche Scientifique (CNRS), ANR, ANR-13-BS02-0009,ALFFA,Traitement Automatique de la Parole pour les Langues Africaines(2013)
Rok vydání: 2017
Předmět:
Zdroj: INTERSPEECH
Interspeech 2017
Interspeech 2017, Aug 2017, Stockholm, Sweden. pp.2138-2142, ⟨10.21437/Interspeech.2017-268⟩
DOI: 10.21437/interspeech.2017-268
Popis: Growing digital archives and improving algorithms for automatic analysis of text and speech create new research opportunities for fundamental research in phonetics. Such empirical approaches allow statistical evaluation of a much larger set of hypothesis about phonetic variation and its conditioning factors (among them geographical / dialectal variants). This paper illustrates this vision and proposes to challenge automatic methods for the analysis of a not easily observable phenomenon: vowel length contrast. We focus on Wolof, an under-resourced language from Sub-Saharan Africa. In particular, we propose multiple features to make a fine evaluation of the degree of length contrast under different factors such as: read vs semi spontaneous speech ; standard vs dialectal Wolof. Our measures made fully automatically on more than 20k vowel tokens show that our proposed features can highlight different degrees of contrast for each vowel considered. We notably show that contrast is weaker in semi-spontaneous speech and in a non standard semi-spontaneous dialect.
Accepted to Interspeech 2017
Databáze: OpenAIRE