Maternal prenatal undernutrition programs adipose tissue gene expression in adult male rat offspring under high-fat diet

Autor: Valérie Montel, Didier Vieau, Jean Lesage, Christophe Breton, I. Fajardy, Fabien Delahaye, Sylvain Mayeur, Isabelle Dutriez-Casteloot, Christine Laborie, Marie Amélie Lukaszewski, Anne Dickes-Coopman
Rok vydání: 2011
Předmět:
Zdroj: American Journal of Physiology-Endocrinology and Metabolism. 301:E548-E559
ISSN: 1522-1555
0193-1849
Popis: Several studies have shown that maternal undernutrition leading to low birth weight predisposes offspring to the development of metabolic pathologies such as obesity. Using a model of prenatal maternal 70% food restriction diet (FR30) in rat, we evaluated whether postweaning high-fat (HF) diet would amplify the phenotype observed under standard diet. We investigated biological parameters as well as gene expression profile focusing on white adipose tissues (WAT) of adult offspring. FR30 procedure does not worsen the metabolic syndrome features induced by HF diet. However, FR30HF rats displayed catch-up growth to match the body weight of adult control HF animals, suggesting an increase of adiposity while showing hyperleptinemia and a blunted increase of corticosterone. Using quantitative RT-PCR array, we demonstrated that FR30HF rats exhibited leptin and Ob-Rb as well as many peptide precursor and receptor gene expression variations in WAT. We also showed that the expression of genes involved in adipogenesis was modified in FR30HF animals in a depot-specific manner. We observed an opposite variation of STAT3 phosphorylation levels, suggesting that leptin sensitivity is modified in WAT adult FR30 offspring. We demonstrated that 11β-HSD1, 11β-HSD2, GR, and MR genes are coexpressed in WAT and that FR30 procedure modifies gene expression levels, especially under HF diet. In particular, level variation of 11β-HSD2, whose protein expression was detected by Western blotting, may represent a novel mechanism that may affect WAT glucocorticoid sensitivity. Data suggest that maternal undernutrition differently programs the adult offspring WAT gene expression profile that may predispose for altered fat deposition.
Databáze: OpenAIRE