Role of krill versus bottom-up factors in controlling phytoplankton biomass in the northern Antarctic waters of South Georgia
Autor: | Rebecca E. Korb, Sophie Fielding, Peter Rothery, Michael J. Whitehouse, Peter Ward, Angus Atkinson |
---|---|
Rok vydání: | 2009 |
Předmět: |
0106 biological sciences
Chlorophyll a Krill 010504 meteorology & atmospheric sciences Euphausia Aquatic Science 01 natural sciences Ecology and Environment chemistry.chemical_compound Nutrient Aquatic plant Phytoplankton 14. Life underwater Ecology Evolution Behavior and Systematics 0105 earth and related environmental sciences Biomass (ecology) Ecology biology 010604 marine biology & hydrobiology 15. Life on land Plankton biology.organism_classification Marine Sciences Oceanography chemistry Zoology |
Zdroj: | Marine Ecology Progress Series. 393:69-82 |
ISSN: | 1616-1599 0171-8630 |
DOI: | 10.3354/meps08288 |
Popis: | The extent to which Antarctic phytoplankton stocks are controlled by 'bottom-up' and/or 'top-down' factors is highly variable. Here we consider data collected at South Georgia dur- ing 3 summer surveys that recorded substantial hydrographic variability. A suite of bottom-up and top-down controlling factors were measured simultaneously at the mesoscale. Sea surface tempera- ture varied by >2°C, macronutrients ranged from near-winter concentrations to near-depleted, while mean densities of a major grazer, krill Euphausia superba, varied between near-zero and >400 g wet mass m -2 . A general linear model was used to identify the main factors implicated in the observed dif- ferences in phytoplankton biomass. Despite east-to-west and on- to off-shelf temperature gradients, temperature per se was not implicated in phytoplankton variability. Also, while there was an abun- dance of NO3-N in surface waters, NH4-N was the key nutrient throughout. A domed relationship between phytoplankton and krill peaked between 2 and 4 mg chlorophyll a m -3 and 6 and 30 g krill m -2 . The positive side of this dome was represented by the west off-shelf region downstream of South Georgia. Here, an ample supply of micro- and macronutrients promoted high primary production, and low densities of krill presumably had little grazing effect. This positive relationship between krill and phytoplankton biomasses was interpreted as krill accumulating in areas of good feeding condi- tions. The negative side of the dome was typified by the east off-shelf region, where macronutrients remained high, primary production rates were low, and krill densities were very high. The grazing rates calculated here suggested that krill affect their food stocks severely, and the negative krill-phytoplankton relationship in this region may reflect locally high krill densities driving down their food supply. |
Databáze: | OpenAIRE |
Externí odkaz: |