Magnetic Nanoparticles Applications for Amyloidosis Study and Detection: A Review
Autor: | Sébastien Mériaux, François Lux, Jonathan Pansieri, C. Marquette, Matthieu Gerstenmayer, Benoit Larrat, Olivier Tillement, Vincent Forge |
---|---|
Přispěvatelé: | Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Service NEUROSPIN (NEUROSPIN), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
magnetic nanoparticles
Amyloid [SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging General Chemical Engineering medical imaging Nanoparticle Nanotechnology 02 engineering and technology Review Paramagnetic nanoparticles lcsh:Chemistry 03 medical and health sciences Amyloid disease chemistry.chemical_compound 0302 clinical medicine Alzheimer’s diseases medicine General Materials Science amyloidosis Amyloidosis 021001 nanoscience & nanotechnology medicine.disease 3. Good health chemistry lcsh:QD1-999 Surface modification Magnetic nanoparticles [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] [SDV.IB]Life Sciences [q-bio]/Bioengineering 0210 nano-technology Pittsburgh compound B targeted nanoparticles 030217 neurology & neurosurgery |
Zdroj: | Nanomaterials Nanomaterials, 2018, 8 (9), pp.740. ⟨10.3390/nano8090740⟩ Nanomaterials, Vol 8, Iss 9, p 740 (2018) Nanomaterials, MDPI, 2018, 8 (9), pp.740. ⟨10.3390/nano8090740⟩ |
ISSN: | 2079-4991 |
Popis: | International audience; Magnetic nanoparticles (MNPs) have great potential in biomedical and clinical applications because of their many unique properties. This contribution provides an overview of the MNPs mainly used in the field of amyloid diseases. The first part discusses their use in understanding the amyloid mechanisms of fibrillation, with emphasis on their ability to control aggregation of amyloidogenic proteins. The second part deals with the functionalization by various moieties of numerous MNPs' surfaces (molecules, peptides, antibody fragments, or whole antibodies of MNPs) for the detection and the quantification of amyloid aggregates. The last part of this review focuses on the use of MNPs for magnetic-resonance-based amyloid imaging in biomedical fields, with particular attention to the application of gadolinium-based paramagnetic nanoparticles (AGuIX), which have been recently developed. Biocompatible AGuIX nanoparticles show favorable characteristics for in vivo use, such as nanometric and straightforward functionalization. Their properties have enabled their application in MRI. Here, we report that AGuIX nanoparticles grafted with the Pittsburgh compound B can actively target amyloid aggregates in the brain, beyond the blood⁻brain barrier, and remain the first step in observing amyloid plaques in a mouse model of Alzheimer's disease. |
Databáze: | OpenAIRE |
Externí odkaz: |