Renormalisation group for multiple zeta values
Autor: | Kurusch Ebrahimi-Fard, Jianqiang Zhao, Johannes Singer, Dominique Manchon |
---|---|
Přispěvatelé: | Université Blaise Pascal - Clermont-Ferrand 2 (UBP) |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics - Number Theory algebra: Hopf Group (mathematics) [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] 010102 general mathematics Transitive action General Physics and Astronomy Hopf algebra 01 natural sciences zeta function renormalization Set (abstract data type) Continuation Product (mathematics) 0103 physical sciences FOS: Mathematics Number Theory (math.NT) 010307 mathematical physics renormalization group 0101 mathematics Mathematical Physics Mathematics Meromorphic function |
Zdroj: | Commun.Num.Theor.Phys. Commun.Num.Theor.Phys., 2018, 12, pp.75-96. ⟨10.4310/CNTP.2018.v12.n1.a3⟩ |
ISSN: | 1931-4531 1931-4523 |
DOI: | 10.4310/cntp.2018.v12.n1.a3 |
Popis: | Calculating multiple zeta values at arguments of any sign in a way that is compatible with both the quasi-shuffle product as well as meromorphic continuation, is commonly referred to as the renormalisation problem for multiple zeta values. We consider the set of all solutions to this problem and provide a framework for comparing its elements in terms of a free and transitive action of a particular subgroup of the group of characters of the quasi-shuffle Hopf algebra. In particular, this provides a transparent way of relating different solutions at non-positive values, which answers an open question in the recent literature. For abbreviated version of the manuscript see arXiv:1510.09159 [math.NT] |
Databáze: | OpenAIRE |
Externí odkaz: |