Singular perturbation of manifold-valued maps with anisotropic energy

Autor: Contreras, Andres, Lamy, Xavier
Přispěvatelé: New Mexico State University, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2022
Předmět:
Zdroj: Analysis & PDE
Analysis & PDE, 2022, 15 (6), pp.1531-1560. ⟨10.2140/apde.2022.15.1531⟩
ISSN: 1948-206X
2157-5045
DOI: 10.2140/apde.2022.15.1531
Popis: We establish small energy H\"{o}lder bounds for minimizers $u_\varepsilon$ of \[E_\varepsilon (u):=\int_\Omega W(\nabla u)+ \frac{1}{\varepsilon^2} \int_\Omega f(u),\] where $W$ is a positive definite quadratic form and the potential $f$ constrains $u$ to be close to a given manifold $\mathcal N$. This implies that, up to subsequence, $u_\varepsilon$ converges locally uniformly to an $\mathcal N$-valued $W$-harmonic map, away from its singular set. We treat general energies, covering in particular the 3D Landau-de Gennes model for liquid crystals, with three distinct elastic constants. Similar results are known in the isotropic case $W(\nabla u)=\vert \nabla u\vert^2$ and rely on three ingredients: a monotonicity formula for the scale-invariant energy on small balls, a uniform pointwise bound, and a Bochner equation for the energy density. In the level of generality we consider, all of these ingredients are absent. In particular, the lack of monotonicity formula is an important reason why optimal estimates on the singular set of $W$-harmonic maps constitute an open problem. Our novel argument relies on showing appropriate decay for the energy on small balls, separately at scales smaller and larger than $\varepsilon$: the former is obtained from the regularity of solutions to elliptic systems while the latter is inherited from the regularity of $W$-harmonic maps. This also allows us to handle physically relevant boundary conditions for which, even in the isotropic case, uniform convergence up to the boundary was open.
Comment: The initial proof of the energy improvement lemma 2.2 contained a gap and has been corrected in this new version
Databáze: OpenAIRE