Is patchy reionization an obstacle in detecting the primordial gravitational wave signal?

Autor: S. Paul, Suvodip Mukherjee, Tirthankar Roy Choudhury
Přispěvatelé: Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Lagrange de Paris, Sorbonne Université (SU), Sorbonne Universités
Rok vydání: 2019
Předmět:
electron
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Cosmic microwave background
first stars
Cosmic background radiation
halo
cosmic background radiation: polarization
FOS: Physical sciences
Astrophysics
cosmic background radiation
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
B-mode: primordial
cosmic background radiation: B-mode
0103 physical sciences
ionization
cosmic background radiation: power spectrum
dark ages
010303 astronomy & astrophysics
Reionization
Physics
spatial distribution
010308 nuclear & particles physics
Gravitational wave
gravitational radiation: primordial
Astrophysics::Instrumentation and Methods for Astrophysics
Spectral density
Astronomy and Astrophysics
Astrophysics - Astrophysics of Galaxies
recombination
observatory
Amplitude
frequency: low
Space and Planetary Science
efficiency
cosmology: observations
Astrophysics of Galaxies (astro-ph.GA)
Dark Ages
reionization
Halo
history
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Astrophysics - Cosmology and Nongalactic Astrophysics
Zdroj: Monthly Notices of the Royal Astronomical Society
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2019, 486 (2), pp.2042-2049. ⟨10.1093/mnras/stz1002⟩
Mon.Not.Roy.Astron.Soc.
Mon.Not.Roy.Astron.Soc., 2019, 486 (2), pp.2042-2049. ⟨10.1093/mnras/stz1002⟩
ISSN: 0035-8711
1365-2966
DOI: 10.48550/arxiv.1903.01994
Popis: The large-scale CMB B-mode polarization is the direct probe to the low frequency primordial gravitational wave signal. However, unambiguous measurement of this signal requires a precise understanding of the possible contamination. One such potential contamination arises from the patchiness in the spatial distribution of free electrons during the epoch of reionization. We estimate the B-mode power spectrum due to patchy reionization using a combination of \emph{photon-conserving} semi-numerical simulation and analytical calculation, and compare its amplitude with the primordial B-mode signal. For a reionization history which is in agreement with several latest observations, we find that a stronger secondary B-mode polarization signal is produced when the reionization is driven by the sources in massive halos and its amplitude can be comparable to the recombination bump for tensor to scalar ratio $(r) \lesssim 5 \times 10^{-4}$. If contamination from patchy reionization is neglected in the analysis of B-mode polarization data, then for the models of reionization considered in this analysis, we find a maximum bias of about $30\%$ in the value of $r=\,10^{-3}$ when spatial modes between $\ell \in [50, 200]$ are used with a delensing efficiency of $50\%$. The inferred bias from patchy reionization is not a severe issue for the upcoming ground-based CMB experiment Simons Observatory, but can be a potential source of confusion for proposed CMB experiments which target to detect the value of $r< 10^{-3}$. However, this obstacle can be removed by utilizing the difference in the shape of the power spectrum from the primordial signal.
9 pages, 6 figures. Reference added
Databáze: OpenAIRE