A Nanoplastic Sampling and Enrichment Approach by Continuous Flow Centrifugation

Autor: Lars Hildebrandt, Denise M. Mitrano, Tristan Zimmermann, Daniel Pröfrock
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Frontiers in Environmental Science, Vol 8 (2020)
Hildebrandt, L.; Mitrano, D.; Zimmermann, T.; Pröfrock, D.: A Nanoplastic Sampling and Enrichment Approach by Continuous Flow Centrifugation. In: Frontiers in Environmental Science. Vol. 8 (2020) 89. (DOI: /10.3389/fenvs.2020.00089)
Frontiers in Environmental Science, 8
ISSN: 2296-665X
Popis: Substantial efforts have been undertaken to isolate and characterize plastic contaminants in different sample matrices in the last years as the ubiquitous presence of particulate plastic in the environment has become evident. In comparison, plastic particles 90%. In a proof-of-principle setup, it was demonstrated that operating two continuous flow centrifuges sequentially at different rotational speeds bears the potential to enable size- and density-selective sampling of the colloidal fraction. A significant fraction of the spiked nanoplastic particles [76% ± 5% (uc)] could be separated from a model mixture of natural particles with a well-defined mean size of approximately 3 µm. While the certified reference plankton material used here was quantitatively retained in the first centrifuge rotor together with 23.0% ± 2.2% of the effective dose of the spiked nanoplastic, the remaining fraction of the nanoplastic could be recovered in the second rotor (53% ± 5%) and the effluent [24.4% ± 2.4% (uc)]. Based on the good retention efficiencies and the demonstrated separation potential, continuous flow centrifugation has proven to be a very promising technique for nanoplastic sampling and enrichment from natural water samples.
Frontiers in Environmental Science, 8
ISSN:2296-665X
Databáze: OpenAIRE