Interneuron Simplification and Loss of Structural Plasticity As Markers of Aging-Related Functional Decline
Autor: | Christina A. Welsh, Genevieve H. Flanders, Jason D. Shepherd, Ronen Eavri, Elly Nedivi, Mark F. Bear |
---|---|
Rok vydání: | 2018 |
Předmět: |
Male
0301 basic medicine Aging Interneuron Mice Transgenic Biology Inhibitory postsynaptic potential Synapse 03 medical and health sciences 0302 clinical medicine Interneurons Fluoxetine Neuroplasticity medicine Animals Cognitive decline Research Articles Visual Cortex Neuronal Plasticity General Neuroscience Optical Imaging Neural Inhibition Long-term potentiation Dendrites 030104 developmental biology medicine.anatomical_structure Visual cortex nervous system Cerebral cortex Antidepressive Agents Second-Generation Evoked Potentials Visual Neuroscience 030217 neurology & neurosurgery |
Zdroj: | The Journal of Neuroscience. 38:8421-8432 |
ISSN: | 1529-2401 0270-6474 |
Popis: | Changes in excitatory neuron and synapse structure have been recognized as a potential physical source of age-related cognitive decline. Despite the importance of inhibition to brain plasticity, little is known regarding aging-associated changes to inhibitory neurons. Here we test for age-related cellular and circuit changes to inhibitory neurons of mouse visual cortex. We find no substantial difference in inhibitory neuron number, inhibitory neuronal subtypes, or synapse numbers within the cerebral cortex of aged mice compared with younger adults. However, when comparing cortical interneuron morphological parameters, we find differences in complexity, suggesting that arbors are simplified in aged mice.In vivotwo-photon microscopy has previously shown that in contrast to pyramidal neurons, inhibitory interneurons retain a capacity for dendritic remodeling in the adult. We find that this capacity diminishes with age and is accompanied by a shift in dynamics from balanced branch additions and retractions to progressive prevalence of retractions, culminating in a dendritic arbor that is both simpler and more stable. Recording of visually evoked potentials shows that aging-related interneuron dendritic arbor simplification and reduced dynamics go hand in hand with loss of induced stimulus-selective response potentiation (SRP), a paradigm for adult visual cortical plasticity. Chronic treatment with the antidepressant fluoxetine reversed deficits in interneuron structural dynamics and restored SRP in aged animals. Our results support a structural basis for age-related impairments in sensory perception, and suggest that declines in inhibitory neuron structural plasticity during aging contribute to reduced functional plasticity.SIGNIFICANCE STATEMENTStructural alterations in neuronal morphology and synaptic connections have been proposed as a potential physical basis for age–related decline in cognitive function. Little is known regarding aging-associated changes to inhibitory neurons, despite the importance of inhibitory circuitry to adult cortical plasticity and the reorganization of cortical maps. Here we show that brain aging goes hand in hand with progressive structural simplification and reduced plasticity of inhibitory neurons, and a parallel decline in sensory map plasticity. Fluoxetine treatment can attenuate the concurrent age–related declines in interneuron structural and functional plasticity, suggesting it could provide an important therapeutic approach for mitigating sensory and cognitive deficits associated with aging. |
Databáze: | OpenAIRE |
Externí odkaz: |