Winning coalitions in plurality voting democracies

Autor: René van den Brink, Agnieszka Rusinowska, Dinko Dimitrov
Přispěvatelé: VU University Amsterdam, Saarland University [Saarbrücken], Centre National de la Recherche Scientifique (CNRS), Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Paris School of Economics (PSE), École des Ponts ParisTech (ENPC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Vrije universiteit = Free university of Amsterdam [Amsterdam] (VU), Economics, Tinbergen Institute, Econometrics and Operations Research
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Social Choice and Welfare
Social Choice and Welfare, Springer Verlag, 2021, 56, pp.509-530. ⟨10.1007/s00355-020-01290-y⟩
van den Brink, R, Dimitrov, D & Rusinowska, A 2020, ' Winning coalitions in plurality voting democracies ', Social Choice and Welfare, vol. 56, no. 3, pp. 509-530 . https://doi.org/10.1007/s00355-020-01290-y
Social Choice and Welfare, 56(3), 509-530. Springer New York
ISSN: 0176-1714
1432-217X
Popis: Open Access funding enabled and organized by Projekt DEAL.; International audience; We consider plurality voting games being simple games in partition function form such that in every partition there is at least one winning coalition. Such a game is said to be weighted if it is possible to assign weights to the players in such a way that a winning coalition in a partition is always one for which the sum of the weights of its members is maximal over all coalitions in the partition. A plurality game is called decisive if in every partition there is exactly one winning coalition. We show that in general, plurality games need not be weighted, even not when they are decisive. After that, we prove that (i) decisive plurality games with at most four players, (ii) majority games with an arbitrary number of players, and (iii) decisive plurality games that exhibit some kind of symmetry, are weighted. Complete characterizations of the winning coalitions in the corresponding partitions are provided as well.
Databáze: OpenAIRE