Detailed genetic analysis of hemagglutinin-neuraminidase glycoprotein gene in human parainfluenza virus type 1 isolates from patients with acute respiratory infection between 2002 and 2009 in Yamagata prefecture, Japan

Autor: Noriko Katsushima, Miho Kobayashi, Hirokazu Kimura, Tsutomu Itagaki, Hiroyuki Tsukagoshi, Chieko Abiko, Yoko Aoki, Tatsuya Ikeda, Kunihisa Kozawa, Masahiro Noda, Tadayuki Ahiko, Mika Saitoh, Katsumi Mizuta
Rok vydání: 2011
Předmět:
Zdroj: Virology Journal
Virology Journal, Vol 8, Iss 1, p 533 (2011)
ISSN: 1743-422X
Popis: Background Human parainfluenza virus type 1 (HPIV1) causes various acute respiratory infections (ARI). Hemagglutinin-neuraminidase (HN) glycoprotein of HPIV1 is a major antigen. However, the molecular epidemiology and genetic characteristics of such ARI are not exactly known. Recent studies suggested that a phylogenetic analysis tool, namely the maximum likelihood (ML) method, may be applied to estimate the evolutionary time scale of various viruses. Thus, we conducted detailed genetic analyses including homology analysis, phylogenetic analysis (using both the neighbor joining (NJ) and ML methods), and analysis of the pairwise distances of HN gene in HPIV1 isolated from patients with ARI in Yamagata prefecture, Japan. Results A few substitutions of nucleotides in the second binding site of HN gene were observed among the present isolates. The strains were classified into two major clusters in the phylogenetic tree by the NJ method. Another phylogenetic tree constructed by the ML method showed that the strains diversified in the late 1980s. No positively selected sites were found in the present strains. Moreover, the pairwise distance among the present isolates was relatively short. Conclusions The evolution of HN gene in the present HPIV1 isolates was relatively slow. The ML method may be a useful phylogenetic method to estimate the evolutionary time scale of HPIV and other viruses.
Databáze: OpenAIRE