On the Fourier analytic structure of the Brownian graph

Autor: Jonathan M. Fraser, Tuomas Sahlsten
Přispěvatelé: The Leverhulme Trust, University of St Andrews. Pure Mathematics
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Anal. PDE 11, no. 1 (2018), 115-132
Sahlsten, T & Fraser, J 2018, ' On the Fourier analytic structure of the Brownian graph ', Analysis & PDE, vol. 11, no. 1, pp. 115-132 . https://doi.org/10.2140/apde.2018.11.115
DOI: 10.2140/apde.2018.11.115
Popis: In a previous article (\textit{Int. Math. Res. Not.} 2014, 2730--2745) T. Orponen and the authors proved that the Fourier dimension of the graph of any real-valued function on $\mathbb{R}$ is bounded above by $1$. This partially answered a question of Kahane ('93) by showing that the graph of the Wiener process $W_t$ (Brownian motion) is almost surely not a Salem set. In this article we complement this result by showing that the Fourier dimension of the graph of $W_t$ is almost surely $1$. In the proof we introduce a method based on Ito calculus to estimate Fourier transforms by reformulating the question in the language of Ito drift-diffusion processes and combine it with the classical work of Kahane on Brownian images.
17 pages, 2 figures. v3: removed the equidistribution section. To appear in Analysis & PDE
Databáze: OpenAIRE