Rolling quantum dice with a superconducting qubit
Autor: | Ben Chiaro, Alexander N. Korotkov, John M. Martinis, Zijun Chen, Evan Jeffrey, Andrzej Veitia, James Wenner, Daniel Sank, Brooks Campbell, Josh Mutus, Charles Neill, Rami Barends, Pedram Roushan, You Lung Chen, Ted White, C. Quintana, Peter O'Malley, Andrew Dunsworth, A. Megrant, Io-Chun Hoi, Austin G. Fowler, Julian Kelly, Andrew Cleland |
---|---|
Rok vydání: | 2014 |
Předmět: |
General Physics
cond-mat.supr-con FOS: Physical sciences Mathematical Sciences Superconductivity (cond-mat.supr-con) Quantum circuit Computer Science::Emerging Technologies quant-ph Quantum error correction Quantum mechanics Mesoscale and Nanoscale Physics (cond-mat.mes-hall) cond-mat.mes-hall Quantum information Physics Quantum Physics Quantum network Condensed Matter - Mesoscale and Nanoscale Physics Condensed Matter - Superconductivity One-way quantum computer Atomic and Molecular Physics and Optics Quantum technology Physical Sciences Chemical Sciences Quantum algorithm Quantum Fourier transform Quantum Physics (quant-ph) |
Zdroj: | Physical Review A, vol 90, iss 3 Physical Review A-Atomic, Molecular, and Optical Physics, vol 90, iss 3 Barends, R; Kelly, J; Veitia, A; Megrant, A; Fowler, AG; Campbell, B; et al.(2014). Rolling quantum dice with a superconducting qubit. Physical Review A-Atomic, Molecular, and Optical Physics, 90(3). doi: 10.1103/PhysRevA.90.030303. UC Riverside: Retrieved from: http://www.escholarship.org/uc/item/18x210pv |
DOI: | 10.1103/PhysRevA.90.030303. |
Popis: | One of the key challenges in quantum information is coherently manipulating the quantum state. However, it is an outstanding question whether control can be realized with low error. Only gates from the Clifford group -- containing $\pi$, $\pi/2$, and Hadamard gates -- have been characterized with high accuracy. Here, we show how the Platonic solids enable implementing and characterizing larger gate sets. We find that all gates can be implemented with low error. The results fundamentally imply arbitrary manipulation of the quantum state can be realized with high precision, providing new practical possibilities for designing efficient quantum algorithms. Comment: 8 pages, 4 figures, including supplementary material |
Databáze: | OpenAIRE |
Externí odkaz: |