COMPORTAMENTO ASSINTOTICO DE UMA CLASSE DE EQUACOES DIFERENCIAIS RETARDADAS COM APLICACOES EM BIOLOGIA

Autor: Duarte Junior, Geraldo Garcia
Přispěvatelé: José Geraldo dos Reis, Cerino Ewerton de Avellar, Rodney Carlos Bassanezi, Julio Cesar Ruiz Claeyssen, Plácido Zoega Táboas
Rok vydání: 2020
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.11606/t.55.2020.tde-20022020-162711
Popis: Não disponível In the first chapter of this work, the retarded functional differential equations x(t) = - λx(t) + λf(x(t - 1)) are studied. We show the existence of an unbounded continuun of slowly oscillating periodic solutions that bifurcates from a non zero equilibrium. In Chapter II, we apply the results of the first chapter in three mathematical models used in Biology; In the last part we study the stability of the equations x(t) = - λx (t) + f(g(t - R1), x(t - R2),...,x(t - Rk)) where x ε R and f: Rn → R. Some results that are independent of the size of the delays are established.
Databáze: OpenAIRE