COMPORTAMENTO ASSINTOTICO DE UMA CLASSE DE EQUACOES DIFERENCIAIS RETARDADAS COM APLICACOES EM BIOLOGIA
Autor: | Duarte Junior, Geraldo Garcia |
---|---|
Přispěvatelé: | José Geraldo dos Reis, Cerino Ewerton de Avellar, Rodney Carlos Bassanezi, Julio Cesar Ruiz Claeyssen, Plácido Zoega Táboas |
Rok vydání: | 2020 |
Zdroj: | Biblioteca Digital de Teses e Dissertações da USP Universidade de São Paulo (USP) instacron:USP |
DOI: | 10.11606/t.55.2020.tde-20022020-162711 |
Popis: | Não disponível In the first chapter of this work, the retarded functional differential equations x(t) = - λx(t) + λf(x(t - 1)) are studied. We show the existence of an unbounded continuun of slowly oscillating periodic solutions that bifurcates from a non zero equilibrium. In Chapter II, we apply the results of the first chapter in three mathematical models used in Biology; In the last part we study the stability of the equations x(t) = - λx (t) + f(g(t - R1), x(t - R2),...,x(t - Rk)) where x ε R and f: Rn → R. Some results that are independent of the size of the delays are established. |
Databáze: | OpenAIRE |
Externí odkaz: |