Assessment of algorithms for mitosis detection in breast cancer histopathology images
Autor: | F. Boray Tek, Stefan M. Willems, Bogdan J. Matuszewski, Josien P. W. Pluim, Satoshi Kondo, Paul J. van Diest, Anders Boesen Lindbo Larsen, Fabio A. González, Violet Snell, Evdokia Arkoumani, Josef Kittler, Alessandro Giusti, Jacob S. Vestergaard, Adnan Mujahid Khan, Thomas Walter, Luca Maria Gambardella, Mitko Veta, Ching-Wei Wang, Frédéric Precioso, Anant Madabhushi, Max A. Viergever, Teofilo de Campos, Miangela M. Lacle, Anders Bjorholm Dahl, Haibo Wang, Angel Cruz-Roa, Dan Ciresan, Nasir M. Rajpoot, Jürgen Schmidhuber |
---|---|
Přispěvatelé: | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Işık University, Faculty of Engineering, Department of Computer Engineering, Tek, Faik Boray, Centre de Bioinformatique (CBIO), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Medical Image Analysis |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
FOS: Computer and information sciences
Computer Vision and Pattern Recognition (cs.CV) Computer Science - Computer Vision and Pattern Recognition H&E stain SDG 3 – Goede gezondheid en welzijn 0302 clinical medicine Breast cancer Whole slide imaging Non-U.S. Gov't ComputingMilieux_MISCELLANEOUS Observer Variation 0303 health sciences Radiological and Ultrasound Technology Research Support Non-U.S. Gov't [SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] Computer Graphics and Computer-Aided Design 3. Good health Radiology Nuclear Medicine and imaging 030220 oncology & carcinogenesis Female Computer Vision and Pattern Recognition Algorithm Algorithms medicine.medical_specialty FEASIBILITY COUNTING MITOSES Mitosis Breast Neoplasms Health Informatics Research Support Cancer grading 03 medical and health sciences SDG 3 - Good Health and Well-being Medical imaging medicine Journal Article Humans Digital pathology Radiology Nuclear Medicine and imaging Comparative Study Grading (tumors) 030304 developmental biology SECTIONS business.industry medicine.disease Mitotic Figure Histopathology business Mitosis detection |
Zdroj: | Medical Image Analysis Medical Image Analysis, Elsevier, 2015, 20 (1), pp.237-248. ⟨10.1016/j.media.2014.11.010⟩ Medical image analysis Medical Image Analysis, 20(1), 237. Elsevier Veta, M, van Diest, P J, Willems, S M, Wang, H, Madabhushi, A, Cruz-Roa, A, Gonzalez, F, Larsen, A B L, Vestergaard, J S, Dahl, A B, Ciresan, D C, Schmidhuber, J, Giusti, A, Gambardella, L M, Tek, F B, Walter, T, Wang, C-W, Kondo, S, Matuszewski, B J, Precioso, F, Snell, V, Kittler, J, de Campos, T E, Khan, A M, Rajpoot, N M, Arkoumani, E, Lacle, M M, Viergever, M A & Pluim, J P W 2015, ' Assessment of algorithms for mitosis detection in breast cancer histopathology images ', Medical Image Analysis, vol. 20, no. 1, pp. 237-248 . https://doi.org/10.1016/j.media.2014.11.010 Medical Image Analysis, 20(1), 237-248. Elsevier |
ISSN: | 1361-8415 1361-8423 |
DOI: | 10.1016/j.media.2014.11.010⟩ |
Popis: | The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists. Comment: 23 pages, 5 figures, accepted for publication in the journal Medical Image Analysis |
Databáze: | OpenAIRE |
Externí odkaz: |