The walk on moving spheres: A new tool for simulating Brownian motion’s exit time from a domain
Autor: | Sylvain Maire, Samuel Herrmann, Madalina Deaconu |
---|---|
Přispěvatelé: | TO Simulate and CAlibrate stochastic models (TOSCA), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Laboratoire Modélisation et Signal (LMS), Université de Toulon (UTLN)-ISITV, Probabilités et statistiques, Institut Élie Cartan de Lorraine ( IECL ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique ( Inria ), Institut de Mathématiques de Bourgogne [Dijon] ( IMB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des Sciences de l'Information et des Systèmes ( LSIS ), Aix Marseille Université ( AMU ) -Université de Toulon ( UTLN ) -Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique ( CNRS ), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), TO Simulate and CAlibrate stochastic models ( TOSCA ), Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut Élie Cartan de Lorraine ( IECL ), Laboratoire Modélisation et Signal ( LMS ), Université de Toulon ( UTLN ) -ISITV, TOSCA |
Rok vydání: | 2017 |
Předmět: |
[ MATH ] Mathematics [math]
[ INFO ] Computer Science [cs] Brownian hitting time General Computer Science Bessel process Boundary (topology) hitting time 01 natural sciences Bessel processes Theoretical Computer Science 010104 statistics & probability symbols.namesake Position (vector) FOS: Mathematics 0101 mathematics Brownian motion Mathematics Numerical Analysis Series (mathematics) Boundary Applied Mathematics Probability (math.PR) Mathematical analysis Hitting time 65C20 65C05 Algorithm [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] 010101 applied mathematics Distribution (mathematics) Walk on moving spheres method Modeling and Simulation 1st-Passage Density symbols numerical algorithm [ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] Mathematics - Probability Bessel function |
Zdroj: | Mathematics and Computers in Simulation 9th IMACS Seminar on Monte Carlo Methods (MCM) 9th IMACS Seminar on Monte Carlo Methods (MCM), Jul 2013, Annecy le Vieux, France. pp.28-38, ⟨10.1016/j.matcom.2015.07.004⟩ 9th IMACS Seminar on Monte Carlo Methods (MCM), Jul 2013, Annecy le Vieux, France. ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, 135, pp.28-38, 2017, 〈http://www.sciencedirect.com/science/article/pii/S0378475415001366〉. 〈10.1016/j.matcom.2015.07.004〉 Mathematics and Computers in Simulation, Elsevier, 2017, 135, pp.28--38. 〈https://doi.org/10.1016/j.matcom.2015.07.004〉 |
ISSN: | 0378-4754 |
DOI: | 10.1016/j.matcom.2015.07.004 |
Popis: | International audience; In this paper we introduce a new method for the simulation of the exit time and exit position of a (delta-dimensional Brownian motion from a domain. The main interest of our method is that it avoids splitting time schemes as well as inversion of complicated series. The method, called walk on moving spheres algorithm, was first introduced for hitting times of Bessel processes. In this study this method is adapted and developed for the first time for the Brownian motion hitting times. The idea is to use the connexion between the (delta-dimensional Bessel process and the (delta-dimensional Brownian motion thanks to an explicit Bessel hitting time distribution associated with a particular curved boundary. This allows to build a fast and accurate numerical scheme for approximating the hitting time. We introduce also an overview of existing methods for the simulation of the Brownian hitting time and perform numerical comparisons with existing methods. (C) 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |