Double shuffle relations and renormalization of multiple zeta values
Autor: | Guo, L., Paycha, S., Xie, B., Zhang, B. |
---|---|
Rok vydání: | 2009 |
Předmět: |
Mathematics - Number Theory
Mathematics - Classical Analysis and ODEs Rings and Algebras (math.RA) Classical Analysis and ODEs (math.CA) FOS: Mathematics FOS: Physical sciences Mathematics - Rings and Algebras Number Theory (math.NT) Mathematical Physics (math-ph) Mathematical Physics 11M41 16W30 35S05 81T15 |
Zdroj: | The geometry of algebraic cycles Clay mathematics proceedings |
DOI: | 10.48550/arxiv.0906.0092 |
Popis: | In this paper we present some of the recent progresses in multiple zeta values (MZVs). We review the double shuffle relations for convergent MZVs and summarize generalizations of the sum formula and the decomposition formula of Euler for MZVs. We then discuss how to apply methods borrowed from renormalization in quantum field theory and from pseudodifferential calculus to partially extend the double shuffle relations to divergent MZVs. |
Databáze: | OpenAIRE |
Externí odkaz: |