The temporal structure of the inner retina at a single glance

Autor: Deniz Dalkara, Klaudia P. Szatko, Timm Schubert, Andre Maia Chagas, David A. Klindt, Thomas Euler, Matthias Bethge, Zhijian Zhao, Alexander S. Ecker, Katrin Franke, Philipp Berens, Dario A. Protti, Luke Edward Rogerson, Christian Behrens
Přispěvatelé: Bodescot, Myriam, In the eye of the observer: Visual processing at the heart of the retina - switchBoard - - H20202015-11-01 - 2019-10-31 - 674901 - VALID, University of Tübingen, The University of Sydney, Institut de la Vision, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Baylor College of Medicine (BCM), Baylor University, Georg-August-University = Georg-August-Universität Göttingen, This work was supported by the German Research Foundation (DFG) through Collaborative Research Centre CRC 1233 (project number 276693517) and DFG grants EC 479/1–1, BE5601/2–1, BE5601/4–1, and EU 42/9–1, the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant (agreement No 674901), the German Excellence Strategy (EXC 2064 – project number 390727645), the Max Planck Society (M.FE.A.KYBE0004), the German Ministry of Research and Education (01GQ1601/Bernstein Award and 01GQ1002), and the Alexander von Humboldt Foundation (Ref 3.1 - AUS/1022403 to DP). The research was also supported by Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC, contract number D16PC00003)., European Project: 674901,H2020,H2020-MSCA-ITN-2015,switchBoard(2015), Georg-August-Universität Göttingen, Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Georg-August-University [Göttingen]
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Male
Retinal Ganglion Cells
0301 basic medicine
Visual perception
Microscope
lcsh:Medicine
Article
Retina
Multiphoton microscopy
law.invention
Mice
03 medical and health sciences
0302 clinical medicine
law
medicine
Neuropil
Animals
[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
Layer (object-oriented design)
[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs
lcsh:Science
030304 developmental biology
Physics
Microscopy
0303 health sciences
Network models
Multidisciplinary
lcsh:R
Feed forward
Inner plexiform layer
Amacrine Cells
030104 developmental biology
medicine.anatomical_structure
[SDV.MHEP.OS] Life Sciences [q-bio]/Human health and pathology/Sensory Organs
Lens (anatomy)
Excitatory postsynaptic potential
lcsh:Q
Female
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
sense organs
Biological system
030217 neurology & neurosurgery
Photoreceptor Cells
Vertebrate
Zdroj: Scientific Reports
Scientific Reports, 2020, 10 (1), pp.4399. ⟨10.1038/s41598-020-60214-z⟩
Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.4399. ⟨10.1038/s41598-020-60214-z⟩
Scientific Reports, Vol 10, Iss 1, Pp 1-17 (2020)
ISSN: 2045-2322
Popis: The retina decomposes visual stimuli into parallel channels that encode different features of the visual environment. Central to this computation is the synaptic processing in a dense and thick layer of neuropil, the so-called inner plexiform layer (IPL). Here, different types of bipolar cells stratifying at distinct depths relay the excitatory feedforward drive from photoreceptors to amacrine and ganglion cells. Current experimental techniques for studying processing in the IPL do not allow imaging the entire IPL simultaneously in the intact tissue. Here, we extend a two-photon microscope with an electrically tunable lens allowing us to obtain optical vertical slices of the IPL, which provide a complete picture of the response diversity of bipolar cells at a “single glance”. The nature of these axial recordings additionally allowed us to isolate and investigate batch effects, i.e. inter-experimental variations resulting in systematic differences in response speed. As a proof of principle, we developed a simple model that disentangles biological from experimental causes of variability, and allowed us to recover the characteristic gradient of response speeds across the IPL with higher precision than before. Our new framework will make it possible to study the computations performed in the central synaptic layer of the retina more efficiently.
Databáze: OpenAIRE