Stable W-length
Autor: | Calegari, Danny, Zhuang, Dongping |
---|---|
Přispěvatelé: | Jaco, William H., Li, Weiping |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: | |
Popis: | We study stable W-length in groups, especially for W equal to the n-fold commutator gamma_n:=[x_1,[x_2, . . . [x_{n-1},x_n]] . . . ]. We prove that in any perfect group, for any n at least 2 and any element g, the stable commutator length of g is at least as big as 2^{2-n} times the stable gamma_n-length of g. We also establish analogues of Bavard duality for words gamma_n and for beta_2:=[[x,y],[z,w]]. Our proofs make use of geometric properties of the asymptotic cones of verbal subgroups with respect to bi-invariant metrics. In particular, we show that for suitable W, these asymptotic cones contain certain subgroups that are normed vector spaces. 24 pages; version 2 incorporates referee's comments |
Databáze: | OpenAIRE |
Externí odkaz: |