Echinacoside protects against MPTP/MPP+-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1
Autor: | Baomei Xia, Gang Chen, Lili Tang, Yan Lu, Zhennian Zhang, Yan Liang, Juanjuan Tang, Ye Yang, Yang Zhao, Wei Wu, Chang Chen, Hui Yang |
---|---|
Rok vydání: | 2018 |
Předmět: |
Male
0301 basic medicine ATG8 ATG5 PC12 Cells Biochemistry Neuroprotection Mice 03 medical and health sciences Cellular and Molecular Neuroscience chemistry.chemical_compound 0302 clinical medicine Sirtuin 1 Autophagy medicine Animals Glycosides Transcription factor Neurons Sirt1 Chemistry MPTP Neurotoxicity MPTP Poisoning medicine.disease Rats Cell biology Disease Models Animal Echinacoside Neuroprotective Agents 030104 developmental biology Proteasome Parkinson’s disease Original Article Neurology (clinical) 030217 neurology & neurosurgery Signal Transduction |
Zdroj: | Metabolic Brain Disease |
ISSN: | 1573-7365 0885-7490 |
DOI: | 10.1007/s11011-018-0330-3 |
Popis: | Parkinson's disease (PD) is a common chronic neurodegenerative disease and greatly affects the quality of PD patients' life. Current symptomatic treatment of PD is limited. There are no effective treatment and drugs that could radically cure PD. Increasing experimental evidence has proven a causal relationship between alpha-synuclein (α-synuclein, α-syn) and the neuropathology of Parkinson's diseases, although the exact pathophysiological role of α-synuclein is not fully clarified. Previous studies showed that monomers and polymers of α-synuclein were secreted from damaged nerve cells via exocytosis and occupied healthy nerve cells via endocytosis, which afford evidence for the prion-like role of α-synuclein. Autophagy is the known mechanism for eukaryotic cells to degrade protein polymers and damaged organelles that proteasome does not cope with. Therefore, promoting the clearance of α-synuclein by enhancing autophagy in neuronal cells could be a promising treatment in the early stage of PD. SIRT1 is a potent regulator of autophagy, because it deacetylates a mass of important transcription factors such as Forkhead Box subgroup O (FoxO) transcription factors family. SIRT1's action relates to FoxO, because FoxO transcription factors are involved in various molecular pathways underlying neuronal protection and autophagy. Moreover, Sirt1 deacetylates proautophagic proteins such as Atg5, Atg7, and Atg8. Echinacoside (ECH) is the main active ingredient of a widely used Chinese herb cistanche, which has been proven to elicit neuroprotective effects in models of neurodegenerative diseases. In this study, we found that ECH could improve PD-like symptoms in MPTP-lesioned mouse model. We further showed that the underlying mechanism of the action of ECH was associated with enhancing autophagy in neurons via bind to Sirt1 directly and affect FoxO expression. Our study demonstrated ECH as a potential therapeutic agent against PD. |
Databáze: | OpenAIRE |
Externí odkaz: |