On the number of $k$-normal elements over finite fields

Autor: Ernist Tilenbaev, Zülfükar Saygı, Çetin Ürtiş
Přispěvatelé: TOBB ETU, Faculty of Science and Literature, Depertment of Mathematics, TOBB ETÜ, Fen Edebiyat Fakültesi, Matematik Bölümü, Saygı, Zülfükar, Ürtiş, Çetin
Rok vydání: 2019
Předmět:
Zdroj: Volume: 43, Issue: 2 795-812
Turkish Journal of Mathematics
ISSN: 1300-0098
1303-6149
Popis: In this article we give an explicit formula for the number of $k$-normal elements, hence answering Problem 6.1. of Huczynska et al. (Existence and properties of $k$-normal elements over finite fields, Finite Fields Appl 2013; 24: 170-183). Furthermore, for some cases we provide formulas that require the solutions of some linear Diophantine equations. Our results depend on the explicit factorization of cyclotomic polynomials.
Databáze: OpenAIRE