On the number of $k$-normal elements over finite fields
Autor: | Ernist Tilenbaev, Zülfükar Saygı, Çetin Ürtiş |
---|---|
Přispěvatelé: | TOBB ETU, Faculty of Science and Literature, Depertment of Mathematics, TOBB ETÜ, Fen Edebiyat Fakültesi, Matematik Bölümü, Saygı, Zülfükar, Ürtiş, Çetin |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Volume: 43, Issue: 2 795-812 Turkish Journal of Mathematics |
ISSN: | 1300-0098 1303-6149 |
Popis: | In this article we give an explicit formula for the number of $k$-normal elements, hence answering Problem 6.1. of Huczynska et al. (Existence and properties of $k$-normal elements over finite fields, Finite Fields Appl 2013; 24: 170-183). Furthermore, for some cases we provide formulas that require the solutions of some linear Diophantine equations. Our results depend on the explicit factorization of cyclotomic polynomials. |
Databáze: | OpenAIRE |
Externí odkaz: |